Модели и структуры данных



         

Сортировки выборкой - часть 5


Суть ее состоит в том, что направления просмотров чередуются: за просмотром от начала к концу следует просмотр от конца к началу входного множества. При просмотре в прямом направлении запись с самым большим ключом ставится на свое место в последовательности, при просмотре в обратном направлении - запись с самым маленьким. Этот алгоритм весьма эффективен для задач восстановления упорядоченности, когда исходная последовательность уже была упорядочена, но подверглась не очень значительным изменениям. Упорядоченность в последовательности с одиночным изменением будет гарантированно восстановлена всего за два прохода.

Сортировка Шелла.

Это еще одна модификация пузырьковой сортировки. Суть ее состоит в том, что здесь выполняется сравнение ключей, отстоящих один от другого на некотором расстоянии d. Исходный размер d обычно выбирается соизмеримым с половиной общего размера сортируемой последовательности. Выполняется пузырьковая сортировка с интервалом сравнения d. Затем величина d уменьшается вдвое и вновь выполняется пузырьковая сортировка, далее d уменьшается еще вдвое и т.д. Последняя пузырьковая сортировка выполняется при d=1. Качественный порядок сортировки Шелла остается O(N^2), среднее же число сравнений, определенное эмпирическим путем - log2(N)^2*N. Ускорение достигается за счет того, что выяв- ленные "не на месте" элементы при d>1, быстрее "всплывают" на свои места.

Пример 3.10 иллюстрирует сортировку Шелла.

{===== Программный пример 3.10 =====} Procedure Sort( var a : seq); Var d, i, t : integer; k : boolean; { признак перестановки } begin d:=N div 2; { начальное значение интервала } while d > 0 do { цикл с уменьшением интервала до 1 } begin k:=true; {пузырьковая сортировка с интервалом d} while k do { цикл, пока есть перестановки } begin k:=false; i:=1; for i:=1 to N-d do { сравнение эл-тов на интервале d } begin if a[i] > a[i+d] then begin t:=a[i]; a[i]:=a[i+d]; a[i+d]:=t; { перестановка } k:=true; { признак перестановки } end; { if ... } end; { for ... } end; { while k } d:=d div 2; { уменьшение интервала } end; { while d>0 } end;




Содержание  Назад  Вперед